Consistency-based Service Level Agreements for Cloud Storage
Doug Terry, Vijayan Prabhakaran, Ramakrishna Kotla, Mahesh Balakrishnan, Marcos Aguilera

Microsoft Research Silicon Valley

Supporting Multiple Consistency Guarantees

Hussam Abu-Libdeh =] Cornell University

Cornell University

Consistency-based SLAs

» Storage systems make consistency-latency tradeoffs

» Eventual consistency is not always sufficient
Strong consistency is not always efficient

» Some data stores provide options
StrongRead, WeakRead, ConsistentRead, ReadCritical,
ReadLatest, ReadAny ...

Problem with multi-consistency stores

Devs are forced to make consistency-latency tradeoffs at
development time with insufficient information!

Our Contributions

We built Pileus, a key-value store with salient properties:

Simple put/get API

Developers do not need to choose from multiple read/write
operations at development time

Multiple consistency guarantees

get (Key) consistency guarantees

Strong Return the value of the last preceeding put (Key)
Eventual Return the value of any previous put (Key)
Read-my-writes Return the value of the last put (Key) in the same session
Monotonic Return a value not older than last get (Key) in this session
Bounded (t) Return a put (Key) value that is stale by at most t seconds
Causal Return the value of the last put (Key) that causally precedes

the get (Key)

Declarative consistency/latency
requirements

Consistency and latency requirements are specified in a service
level agreement and enforced at runtime

Data Replication in Pileus

— Primary receives and orders all write requests

— Key-value pairs are timestamped according to write-order
— Primary asynchronously propagates writes to secondaries
— Secondaries apply updates according to timestamp order

— Keys can be partitioned across multiple primary/secondary
groups

UT/G ET

Consistency Guarantees with Pileus

— Replicas maintain highest timestamp of an applied update
— Clients maintain timestamp of last put/get request

— Clients route get requests based on local timestamps,
previous session operations, and desired consistency guarantee

Guarantee Timestamp at replica receiveing get (Key)
Strong (Primary only)

Eventual (Any replica)

Read-my-writes > timestamp of last put of same key in current session
Monotonic > timestamp of last get of same key in current session
Bounded (t) > current time - time bound

Causal > timestamp of last get of any key in current session

[=];
[=]

=]

More info?

Goal:

Capture developer's consistency/latency preferences and make
best effort at satistying them.

Expressing SLAs:
» Ordered list of consistency, latency bound, and utilitly triples

> get requests return data with information about the delivered
consistency and latency

Examples:
Shopping cart application:

"Answer all requests with a 300 msec latency
bound, but try to make responses consistent.”

U

Rank Consistency Latency Utility
1 read-my-writes 300 msec 1.0
2 eventual 300 msec 0.5

Bound on latency, preference for consistency

Web application:

“I want a reply in under 150 msec and pre-
fer strongly consistent data but will accept any
data; if no data can be obtained quickly then |
am willing to wait up to a second for up-to-date

data.”

Rank Consistency Latency Utility
1 strong 150 msec 1.0

2 eventual 150 msec 0.5

3 strong 1 sec 0.25

Prefer fast response, if not, slow but consistent

Enforcing SLAs:

» Clients enforce SLAs by monitoring storage replicas for
operation latencies and highest timstamp at each replica and
directing get requests accordingly

» Clients choose replicas that maximize expected utility

» If an SLA cannot be satisfied for a get request, then an error
code will be returned. A catch-all consistency/latency
requirement can be added to the end of the SLA to ensure
that all requests are satisfied



