
Consistency-based Service Level Agreements for Cloud Storage
Doug Terry, Vijayan Prabhakaran, Ramakrishna Kotla, Mahesh Balakrishnan, Marcos Aguilera

Microsoft Research Silicon Valley

Hussam Abu-Libdeh

Cornell University

Motivation

I Storage systems make consistency-latency tradeoffs

I Eventual consistency is not always sufficient
Strong consistency is not always efficient

I Some data stores provide options
StrongRead, WeakRead, ConsistentRead, ReadCritical,
ReadLatest, ReadAny . . .

Problem with multi-consistency stores

Devs are forced to make consistency-latency tradeoffs at
development time with insufficient information!

Our Contributions

We built Pileus, a key-value store with salient properties:

Simple put/get API
Developers do not need to choose from multiple read/write
operations at development time

Multiple consistency guarantees
get(Key) consistency guarantees

Strong Return the value of the last preceeding put(Key)

Eventual Return the value of any previous put(Key)
Read-my-writes Return the value of the last put(Key) in the same session
Monotonic Return a value not older than last get(Key) in this session
Bounded (t) Return a put(Key) value that is stale by at most t seconds
Causal Return the value of the last put(Key) that causally precedes

the get(Key)

Declarative consistency/latency
requirements

Consistency and latency requirements are specified in a service
level agreement and enforced at runtime

Supporting Multiple Consistency Guarantees

Data Replication in Pileus
− Primary receives and orders all write requests

− Key-value pairs are timestamped according to write-order

− Primary asynchronously propagates writes to secondaries

− Secondaries apply updates according to timestamp order

− Keys can be partitioned across multiple primary/secondary
groups

1" 2" 3"

1" 2"

1"

1" 2" 3"

1"

PUT/GET"""

GET"""

Consistency Guarantees with Pileus
− Replicas maintain highest timestamp of an applied update

− Clients maintain timestamp of last put/get request

− Clients route get requests based on local timestamps,
previous session operations, and desired consistency guarantee

Guarantee Timestamp at replica receiveing get(Key)

Strong (Primary only)
Eventual (Any replica)
Read-my-writes ≥ timestamp of last put of same key in current session
Monotonic ≥ timestamp of last get of same key in current session
Bounded (t) ≥ current time - time bound
Causal ≥ timestamp of last get of any key in current session

More info?

Consistency-based SLAs

Goal:
Capture developer’s consistency/latency preferences and make
best effort at satisfying them.

Expressing SLAs:
I Ordered list of consistency, latency bound, and utilitly triples

I get requests return data with information about the delivered
consistency and latency

Examples:
Shopping cart application:

“Answer all requests with a 300 msec latency
bound, but try to make responses consistent.”

⇓
Rank Consistency Latency Utility
1 read-my-writes 300 msec 1.0
2 eventual 300 msec 0.5

Bound on latency, preference for consistency

Web application:
“I want a reply in under 150 msec and pre-
fer strongly consistent data but will accept any
data; if no data can be obtained quickly then I
am willing to wait up to a second for up-to-date
data.”

⇓
Rank Consistency Latency Utility
1 strong 150 msec 1.0
2 eventual 150 msec 0.5
3 strong 1 sec 0.25

Prefer fast response, if not, slow but consistent

Enforcing SLAs:
I Clients enforce SLAs by monitoring storage replicas for

operation latencies and highest timstamp at each replica and
directing get requests accordingly

I Clients choose replicas that maximize expected utility

I If an SLA cannot be satisfied for a get request, then an error
code will be returned. A catch-all consistency/latency
requirement can be added to the end of the SLA to ensure
that all requests are satisfied


