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ABSTRACT

The increasing popularity of cloud storage is leading organizations
to consider moving data out of their own data centers and into the
cloud. However, success for cloud storage providers can present a
significant risk to customers; namely, it becomes very expensive to
switch storage providers. In this paper, we make a case for apply-
ing RAID-like techniques used by disks and file systems, but at the
cloud storage level. We argue that striping user data across multi-
ple providers can allow customers to avoid vendor lock-in, reduce
the cost of switching providers, and better tolerate provider outages
or failures. We introduce RACS, a proxy that transparently spreads
the storage load over many providers. We evaluate a prototype of
our system and estimate the costs incurred and benefits reaped. Fi-
nally, we use trace-driven simulations to demonstrate how RACS
can reduce the cost of switching storage vendors for a large or-
ganization such as the Internet Archive by seven-fold or more by
varying erasure-coding parameters.
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1. INTRODUCTION

Current trends show an increasing number of companies and or-
ganizations migrating their data to cloud storage providers [37].
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Typical usage examples include storing online users’ account data,
off-site backup storage, and content distribution, to name a few.
In fact, one impressive pilot program and motivating example is a
recent announcement by the United States Library of Congress to
move its digitized content to the cloud [15]. Other participants in
that program include the New York Public Library and the Biodi-
versity Heritage Library.

However, for a service to depend solely on a particular cloud
storage provider has its risks. Even though different cloud storage
providers offer nearly identical service commodities, customers can
experience vendor lock-in: It can be prohibitively expensive for
clients to switch from one provider to another. Storage providers
charge clients for inbound and outbound bandwidth and requests
as well as for hosting the actual data. Thus, a client moving from
one provider to another pays for bandwidth twice, in addition to
the actual cost of online storage. This doubled cost of moving
data leads to a kind of “data inertia”; the more data stored with
one provider, the more difficult it becomes to move. This must be
taken into consideration by consumers of cloud storage, lest they be
locked into less-than-ideal vendors after entrusting them with their
data. The resulting vendor lock-in gives storage providers leverage
over clients with large amounts of data. These clients are vulnera-
ble to price hikes by vendors, and will not be able to freely move to
new and better options when they become available. The quickly-
evolving cloud storage marketplace makes this concern more real:
A customer’s best decision now may leave him trapped with an ob-
solete provider later, held hostage by vendor lock-in.

In addition to possible increased costs, vendor lock-in subjects
customers to the possibility of data loss if their provider goes out
of business or suffers a catastrophe. Even though cloud operators
abide by strict service-level agreements (SLAs) [3, 8, 13] with im-
pressive up-times and response delays, failures and outages do oc-
cur [2, 12]. Further, recent incidents have shown how failures at
cloud providers can result in mass data loss for customers, and that
outages, though seldom, can last up to several hours [4].

Since cloud storage is for the most part a commodity, one way
for customers to guard against vendor lock-in is to replicate their
data to multiple providers. This achieves the goals of redundancy
and market mobility, but at a very high storage and bandwidth cost.
A more economical approach is to spread the data across multi-
ple providers and introduce redundancy to tolerate possible failures
or outages, but stopping short of replication. This is indeed very
similar to what has been done for years at the level of disks and
file systems. RAID 5, for example, stripes data across an array of
disks and maintains parity data that can be used to reconstruct the
contents of any individual failed disk. In this paper we argue that
similar techniques can be carried over to cloud storage, although
the failure model differs somewhat.



In this paper, we describe RACS (Redundant Array of Cloud
Storage), a cloud storage proxy that transparently stripes data
across multiple cloud storage providers. RACS reduces the one-
time cost of switching storage providers in exchange for additional
operational overhead. RACS assumes a minimal storage interface
(put, get, delete, list)and exposes thatinterface to its
applications. In designing and evaluating this system we make sev-
eral contributions. First, we show through simulation and up-to-
date pricing models that, through careful design, it is possible to
tolerate outages and mitigate vendor lock-in with reasonable over-
head cost. Second, we show through trace-driven simulations the
cost of switching cloud storage vendors for a large organization.
Third, we build and evaluate a working prototype of RACS that is
compatible with existing Amazon S3 clients and able to use mul-
tiple storage providers as back-ends, and we demonstrate its effec-
tiveness on end-user traces.

In the remainder of this paper, we first motivate why clients
should diversify their storage providers and give a brief overview
of existing data striping and erasure coding techniques in section 2.
In section 3, we describe our design followed by a discussion of
our trace-based simulation results in section 4 and prototype eval-
uation in section 5. Section 6 gives an overview of related work. In
Sections 7 and 8, we conclude with a discussion of the implications
of our work and discuss how this research agenda might be further
explored.

2. WHY SHOULD WE DIVERSIFY?

Hosted data storage is a commodity, and it is fungible. Cer-
tainly, cloud storage providers do distinguish themselves by offer-
ing services above-and-beyond basic storage. Often, these services
involve integration with other cloud computing products; for exam-
ple, Amazon’s EC2 and Cloudfront are deeply intertwined with S3.
But many consumers just want reliable, elastic, and highly avail-
able online storage. These terms apply to most cloud storage offer-
ings, to the point that storage services are effectively interchange-
able, in spite of cosmetic differences. Because of this, cloud storage
providers compete aggressively on price, knowing that this will be
the ultimate deciding factor for many consumers. They also com-
pete on guarantees of uptime and availability, in the form of SLAs.
These guarantees are upheld by systems meticulously designed to
handle load balancing, recurring data backup, and replication to
seamlessly handle component failures. So one would understand-
ably wonder if there’s really any benefit to be had by adding even
more redundancy to the system and spreading data across multiple
providers.

To address this, we distinguish two different kinds of failures:

QOutages A series of improbable events leads to data loss in the
cloud. As mentioned, cloud providers already offer strong
protection against component failures, so there is a thin case
for adding another failsafe on top of cloud storage systems.
Still, it does happen occasionally that an outage strikes the
cloud: For instance, a failure in October 2009 at a Microsoft
data center resulted in data loss for many T-Mobile smart
phone users [23]. Not to mention that the reliability of the
cloud as a long-term storage medium is untested [35].

Economic Failures We define economic failure to be the situ-
ation where a change in the marketplace renders it pro-
hibitively expensive for a cloud storage consumer to continue
to use a service. There is often some advance warning of eco-
nomic failure; for example, at the time of writing this paper,
there is no bandwidth charge for uploading data to Amazon

S3. But on June 30, 2010, Amazon will start charging fifteen
cents per gigabyte. A customer who relies on a heavy volume
of uploads, such as an online backup business, might find this
very expensive. Other examples include a service going out
of business.

In this paper, we are primarily concerned with economic failure.

2.1 Avoiding Storage Vendor Lock-in

Cloud storage services differ in pricing scheme and performance
characteristics. Some providers charge a flat monthly fee, others
negotiate contracts with individual clients, and still others offer
discounts for large volume or temporary promotional incentives or
lower bandwidth rates for off-peak hours. Some providers may be
desirable for geographic reasons (Amazon offers different zones for
the United States and Europe), and others may offer extra features
such as publishing files directly to the web or access via mount-
able file system. Changes in these features, or the emergence of
new providers with more desirable characteristics, might incen-
tivize some clients to switch from one storage service to another.
However, because of storage inertia, clients may not be free to
choose the optimal vendor due to prohibitively high costs in switch-
ing from one provider to another. This puts the client at a disadvan-
tage when a vendor raises prices or negotiates a new contract.

As an example, consider a situation where a new provider with
a low pricing scheme emerges on the market. A client at an old
provider has to make an all-or-nothing decision about his storage
service. He either moves all his data to the new provider and incurs
the cost of switching to gain the benefit of lower prices, or he stays
at the old provider and saves the cost of switching at the risk of in-
curring higher costs in the long run. The problem, of course, is that
the client can not tell if and when his current provider will lower
the pricing scheme to compete with the other providers’. From the
client’s point of view, a premature switch can be worse than no-
switch, and a late switch might have lost its value. Of course, this
is not limited to price changes. Clients might be stuck with under-
performing providers simply because switching to better providers
is deemed too costly.

One way to allow clients to be more agile in responding to
provider changes is by making the switching and data placement
decisions at a finer granularity than a global all-or-nothing. This can
be achieved by striping the client’s data across multiple providers.
For example, if a client spreads his data across several providers,
taking advantage of a new fast provider entails switching only a
fraction of the data, which could be more economically feasible.

Of course, striping data across multiple providers entails added
costs due to the difference in pricing between the different
providers. However, as we’ll show in our cost estimates, these dif-
ferences are low and can be mitigated by choosing clever striping
schemes.

2.2 Incentives for Redundant Striping

We have argued that, by striping data across multiple providers,
clients can be more agile in responding to provider changes. Now
we argue that by adding redundancy to data striping, clients can
maintain this mobility while insuring against outages.

We use erasure coding to create this redundancy. After erasure
coding, we will be able to tolerate the loss of one or more storage
providers without losing data—and do so without the overhead of
strict replication [18, 22, 33, 39]. Erasure-coding maps a data ob-
ject broken into m equal-size original fragments (shares) onto a
larger set of n fragments of the same size (n > m), such that the
original fragments can be recovered from any m fragments. The
fraction of the fragments required for reconstruction is called the



< 1. A rate r erasure-code increases

the storage cost by a factor of % For example, an r = % encod-

ing might produce n = 8 fragments, any m = 4 of which are suffi-
cient to reconstruct the object, resulting in a total overhead factor of
1 =1= % = 2. Note that m = 1 represents strict replication, and
RAID level 5 [30] can be described by (m =4, n=235). Generally,
there are three types of erasure-codes!: optimal, near optimal, and
rateless. But we only consider optimal erasure-codes in this works
since 7 is usually fairly small. Data loss occurs when all replicas
or a sufficient fraction of fragments for erasure-codes (more than
n —m fragments) are lost due to permanent failure.

Below is a brief description of what clients can gain from erasure
coding across multiple providers:

Tolerating Outages. Although storage providers offer very
highly available services, experience tells us that even the best
providers suffer from occasional mishaps. Inopportune outages can
last for several hours [2, 4, 12] and can result in severe finan-
cial losses for the providers and consumers of the storage service.
Adding data redundancies across multiple providers allows clients
to mask temporary outages and get higher data availability.

Tolerating Data Loss. Storage providers implement internal re-
dundancy and replication schemes to avoid accidental data loss.
However, recent experience shows that hosted data could be lost
[23]. Intuitively, storing redundant copies of the data with multi-
ple providers can allow consumers to mask data loss and failure at
individual providers.

A simple way to tolerate provider failure is by fully replicating
data to multiple providers. However, this approach is costly since
the redundancy overhead is 100% the size of the data. A more eco-
nomically sensible approach is to lower the redundancy overhead
by using erasure coding techniques and stripe the data and redun-
dant blocks across multiple providers to tolerate the failure of one
or more of them.

Adapting to Price Changes. Erasure coding across multiple
providers allows clients to make migration decisions at a lower
granularity. For example, clients can take advantage of a provider’s
price reduction by favoring the provider to serve in different quo-
rums. If a provider becomes too expensive to use, clients can avoid
reading from it and reconstruct its data from the added redundancy
at other locations.

Adapting to New Providers. If a new service provider enters
the market, clients can include it in future erasure codes.

Control Monetary Spending. By using a mixture of online
providers, second tier storage services, and local servers, clients
can control the cost of storing and serving data. Clients can bias
data accesses to cheaper options to reduce the overall cost of stor-
age.

Choice in Data Recovery. In the event of a failure of one or
more online storage providers, the added redundancy allows clients
to choose amongst multiple strategies for recovering the lost data.
For example, clients might choose to reconstruct the missing data
aggressively from other providers. Another approach is to recon-
struct the data lazily by reconstructing missing data upon client re-

rate, denoted r, with r =

1Optimal erasure codes such as Reed-Solomon [16, 31, 34] codes
produce n=m/r (r < 1) fragments where any m fragments are suf-
ficient to recover the original data object. Unfortunately optimal
codes are costly (in terms of memory usage, CPU time, or both)
when m is large, so near optimal erasure codes such as Tornado
codes [25, 26] are often used. These require (1+€&)m fragments to
recover the data object. Reducing € can be done at the cost of
CPU time. Alternatively, rateless erasure codes such as LT [24],
Online [27], or Raptor [36], codes transform a data object of m
fragments into a practically infinite encoded form.

put bucket, key, object
get bucket, key

delete  bucket, key
create  bucket

delete  bucket

list keys in bucket

list all buckets

Table 1: Amazon S3 operations

quests. Or, if the degree of redundancy is sufficient, clients might
even choose to ignore the failed provider and continue their opera-
tion without reconstruction.

The main idea is that if clients were to use a single provider, they
would not be able to tolerate the provider’s failure. Replicating data
to multiple providers allows clients to tolerate failures, but comes
at a higher cost. Erasure coding the data across multiple providers
allows clients to tolerate provider failures and the extra redundancy
allows clients to implement different strategies and optimize for
different objectives in storing and accessing their data.

3. DESIGN

RACS mimics the interface of Amazon S3, and uses the same
data model. S3 stores data in named buckets. Each bucket is a flat
namespace, containing keys associated with objects. A bucket can-
not contain other buckets. Objects can be of arbitrary size, up to 5
gigabytes. Partial writes to objects are not allowed; they must be
uploaded in their entirety, but partial reads are allowed. We chose
Amazon S3’s interface for RACS for two reasons: First, its no-frills
simplicity is easy to work with, and second, its popularity means
that we will be able to use existing client applications with RACS.
To describe the design of RACS, we will discuss how it implements
a core subset of S3’s operations, shown in Table 1.

RACS presents itself as a proxy interposed between the client
application and a set of n repositories, which are cloud storage lo-
cations ideally hosted by different providers. RACS operates trans-
parently, allowing use of unmodified S3 clients. Upon receiving a
put request, RACS splits the incoming object into m data shares of
equal size (i.e. each share is 1/m of the original object size), where
m < n are configurable parameters. RACS then uses erasure coding
to create an additional (n — m) redundant shares, for a total of n
shares. Redundant shares are the same size as data shares. Any sub-
set of m shares is sufficient to reconstruct the original object. Each
share is sent to a different repository.

Conversely, when a client issues a get request, RACS fetches m
shares and reassembles the data. Metadata such as bucket and key
names, modification times, and MIME types are replicated across
all servers; these data are relatively small and replication is not pro-
hibitive unless the workload is dominated by very small objects.
RACS also stores a small amount of its own metadata with each
share, including the size of the original object and its content hash.
This allows list requests, which return information including size
and MDS5 sum for every key in a bucket, to be fulfilled without
querying multiple repositories or reconstructing coded objects.

Figure 1 illustrates the RACS architecture with a single proxy.

3.1 Distributed RACS

Because all data must pass through a RACS proxy to be encoded
and decoded, a single RACS proxy could easily become a bottle-
neck. To avoid this, RACS is intended to be run as a distributed
system, with many proxies concurrently communicating with the
same set of repositories. RACS proxies store a limited amount of
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Figure 1: RACS single-proxy architecture

state: User authentication information and the location and cre-
dentials for each repository. Changes to this state are broadcast
to each proxy. Distributing shares of data to multiple repositories
introduces a kind of data race that is not native to S3 semantics. If
two clients simultaneously write to the same key using Amazon S3,
Amazon will process the writes in the (arbitrary) order it receives
them, and the later write will trump the earlier. If the same two
writes are issued to two different RACS proxies, this race will be
played out at each of the n repositories, with possibly catastrophic
results. Any two repositories for which the outcome of the race
differs will become inconsistent, and RACS would have a difficult
time determining which of the two objects is the correct one. Worse,
there may not be m shares of either object in the system, leading to
data loss. A related problem occurs when a read and write hap-
pen concurrently: The read may return some combination of old
and new shares. To prevent these races, RACS proxies coordinate
their actions with one-writer, many-reader synchronization for each
(bucket,key) pair. RACS relies on Apache ZooKeeper [14] for dis-
tributed synchronization primitives. ZooKeeper is a distributed sys-
tem that provides atomic operations for manipulating distributed
tree structures; it can be used to implement synchronization prim-
itives and abstract data types (ADTs). Such synchronization prim-
itives cannot be built using only S3, as it lacks strong consistency
guarantees.

Figure 2 illustrates the RACS architecture with multiple dis-
tributed proxies.

3.2 Failure Recovery

Economic failures such as price increases are often known ahead
of time. Administrators of a RACS system can begin a migration
away from a repository even before the failure occurs, in a sort of
pre-emptive failure recovery. During a migration, RACS moves the
redundant shares from the soon-to-fail repository to a fresh repos-
itory. While migrating, RACS does not use the failed repository to
serve get requests unless other failures have occurred. put requests
are redirected from the failed repository to the new repository. This
entails download and then upload of 1/m of the total object data,
a major improvement over replication. Unpredictable failures carry
a higher price of recovery: RACS must reconstruct the redundant
shares from other repositories. This is still preferable to replication,
though, as only 1/m of the total object data is uploaded. Depend-
ing on its configuration, RACS may interpret unpredictable failures
as transient, and continue normal operation in the hope that failed
repository returns. Operations such as put and delete that modify
data during such an outage will cause the failed repository to be-
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Figure 2: Multiple RACS proxies coordinate their actions using
ZooKeeper

come out-of-sync with the others; we leave the question of how to
recover a repository from a transient outage for future work.

3.3 Policy Hints

RACS is compatible with unmodified client applications. How-
ever, a RACS-aware client can include in its requests hints about
how RACS should behave. Many RACS operations involve a
choice about which repositories to communicate with, and in which
order. Using policy hints, a client can specify preferred repositories.
This has many potential uses: Exploitation of geographic proxim-
ity, navigation of variable pricing schemes (such as off-peak dis-
counts), load-balancing, or even load-unbalancing to favor inex-
pensive repositories. Further, trade-offs may be made to favor band-
width over latency or vice versa. For example, a list operation nor-
mally queries only a single repository, but clients who value latency
above all else might choose to concurrently query all repositories
and take the quickest answer.

3.4 Repository Adapters

It would be unrealistic to expect cloud storage providers other
than Amazon to offer the same REST interface as S3. RACS does
not require this. Instead, adapters are written that wrap a storage
provider’s API in S3-like semantics that can be used by RACS.
For some providers, such as Rackspace, there is a direct correspon-
dence. For others, such as network mounted filesystems, a more
complicated mapping must be devised.

3.5 Performance Overhead

The primary goal of RACS is to mitigate the cost of vendor lock-
in by reducing the importance of individual storage providers. In
exchange, RACS incurs higher overhead costs as follows:

Storage RACS uses a factor of n/m more storage, plus some ad-
ditional overhead for metadata associated with each share.
Since storage is split among different providers, some of
whom may have higher rates, the total price paid for stor-
age may be even greater than n/m times the cost of using
only the least expensive provider.

Number of requests RACS issues a factor of n more requests to
repositories for put , create , and delete operations than the
client would using S3 directly. get requests are multiplied
by m. list operations do not use any additional requests by
default.



Bandwidth RACS increases the bandwidth used by put operations
by a factor of 7%, due to the redundant shares. get requests
do not suffer a commensurate bandwidth increase. list uses
no additional bandwidth by default. However, each operation
does incur a slight increase in bandwidth due to the extra
number of requests per operation and the size of the header
for each request; this may be significant if stored objects are

relatively small.

Latency RACS may introduce slightly more latency for put re-
quests, as put operations must wait for the slowest of the
repositories to complete the request. On the other hand, op-
erations such as list that require only one answer can op-
tionally query all repositories in parallel and return as soon
as the first response is received. However, there is an inher-
ent tradeoff between bandwidth and latency. get occupies a
middle-ground: Depending on which subset of m reposito-
ries is queried, latency could be better than the average of all
repositories. Erasure coding also introduces latency, as the
proxy must buffer blocks of data to encode or decode. Co-
ordination with ZooKeeper is another source of latency, al-
though it is expected to be little more than the round-trip time
to ZooKeeper except in the presence of object contention.

3.6 RACS Prototype Implementation

Our RACS prototype is implemented in approximately 4000
lines of Python code. We implement Amazon S3’s REST inter-
face, which exposes S3 as a web-based service. It is simpler and
more popular than the more powerful S3 SOAP interface. Most
existing S3 REST clients can be configured to communicate with
S3 through an HTTP proxy; this is generally used to bypass fire-
walls. By setting RACS as a proxy, S3 clients can take advantage
of RACS without modification. It is relatively easy to map a ba-
sic data model onto others; we might have instead chosen to have
RACS present itself as a network file system, but using file system
semantics would have added considerable complexity to the imple-
mentation. Our prototype does not yet implement the complete S3
interface: It has no provisions for authentication or payment-related
queries. It also does not implement RACS policy hints, although a
static configuration option can be set to prioritize bandwidth or la-
tency. ZooKeeper is used to implement readers-writer locks at per-
key granularity for distributed RACS proxies.

The design for RACS calls for repositories backed by many dif-
ferent storage providers. Our implementation supports three kinds
of repositories: S3-like (including S3 and Eucalyptus [28], an open-
source Amazon Web Services clone), Rackspace Cloud Files [11],
and a file system mapping that can be used for mounted network file
systems. The Rackspace repository adapter is 258 lines of Python
code, and the file system adapter is 243. Both were written in a
matter of hours; we expect this to be typical of the ease of adding
new kinds of repositories.

Before evaluating our prototype, we will first estimate the vendor
lock-in cost associated with switching storage providers. We will
then estimate the cost of avoiding vendor lock-in by using RACS.

4. AN INTERNET ARCHIVE IN THE
CLOUD

One of our primary motivating examples is the recent decision
by the Library of Congress and a handful of other American public
libraries to move their digitized content to the cloud [15]. A pi-
lot program of this initiative is being developed by the non-profit
DuraSpace organization [5]. Publicly released documents, along
with personal conversations with the program directors, reveal that

the project (titled DuraCloud) entails replicating the libraries’ data
across multiple cloud providers to safeguard against sudden fail-
ure. We believe that RACS’ data striping approach is more fit for
the task because it minimizes the cost of redundancy and allows a
large organization to switch cloud storage providers without incur-
ring high costs.

We used a trace-driven simulation to understand the costs associ-
ated with hosting large digital libraries in the cloud. Our trace cov-
ers 18 months of activity on the Internet Archive [9] (IA) servers.
The trace represents HTTP and FTP interactions to read and write
various documents and media files (images, sounds, videos) stored
at the Internet Archive and served to users. We believe this trace is
a good reflection of the type of workloads induced on online digital
library systems, both in terms of the file sizes and request patterns.

Our goal from using this trace is to answer the following high-
level questions:

e What are the estimated costs associated with storing library-
type content such as the Library of Congress and the Internet
Archive on the cloud?

e What is the cost of changing storage providers for large or-
ganizations? What is the added cost of a DuraCloud-like
scheme?

e What is the cost of avoiding vendor lock-in using RACS?
And what is the added cost overhead of using RACS?

4.1 Trace Characteristics

The Internet Archive trace covers the period from November of
2007 to May of 2009. Figure 3 shows the amounts of data written to
the Internet Archive servers and read back from it. The volume of
data transfers is dominated 1.6:1 by reads to writes. Figure 4 shows
the number of read and write requests issued to the Internet Archive
servers during that period. Read requests are issued at a 2.8:1 ratio
compared to write requests. In our simulation, we assume that the
cloud starts empty; that is, it is not preloaded with any data before
the simulation begins.

4.2 Cost of Moving to The Cloud

We estimated the monetary cost of moving the Internet Archive
data to the cloud using up-to-date pricing schemes of the lead-
ing public cloud storage providers and the trace described in Sec-
tion 4.1. Storage providers offer bracket-based pricing schemes de-
pending on the amount of data stored and bandwidth consumed in
transfers. Table 2 lists a simplified view of the pricing scheme for
leading cloud storage providers [1,6,7,10, 11]. In addition to band-
width and storage, providers exposing a REST API also charge per
operation. The full details of the different pricing schemes are not
shown in the table for brevity, however we used a detailed model in
our simulation.

In Figure 5, we estimated the cost of servicing the Internet
Archive by using a single storage provider, the DuraCloud scheme
of full replication to two providers, and RACS using multiple era-
sure coding configurations. There are three key takeaways. First,
the pricing schemes of the different storage providers are very com-
parable with one another. Hosting Internet Archive in the cloud
with a single provider costs between $9.2K to $10.4K per month.
Second, using full-replication with this workload roughly doubles
the hosting costs and is less ideal than using an erasure coding
striping technique as with RACS. Finally, the added overhead cost
of RACS depends on the coding configuration. Competitive cloud
storage providers have SLAs with 99% and 99.9% monthly up-
time percentages, thus we believe that adding enough redundancy
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to tolerate one provider outage or failure at a time will be sufficient
in most cases. In such situations, it is ideal to spread the stripes
across many providers to lower the overhead costs. In our calcu-
lations, we stripe data across up to nine providers while tolerating
one provider’s failure. While this might not be possible today due
to the limited number of public cloud storage providers, we believe
it is a valid estimate in anticipation of expected growth in this pop-
ular market. However, we also calculated the associated costs with
modest striping schemes with 7 and 5 providers which are possible
in today’s market.

Striping data across 9 providers while tolerating 1 provider’s
failure has an added overhead cost of roughly $1000 a month,
just under 11% of the original monthly cost. Figure 6 shows the
breakdown of the cloud storage cost in four configurations, a sin-
gle provider, the DuraCloud system, and with RACS using 5 and
9 repositories. In all cases, the monthly bill is dominated by the
storage costs. Also, outbound traffic costs are higher than inbound
traffic costs. The dominance of storage costs explains why a simple
full replication scheme as proposed in DuraCloud is very costly.
It also explains why striping cloud storage across a large number
of providers so as to limit the overhead added to each individual
provider’s share is preferable.

4.3 Cost of Vendor Lock-in

One of our main arguments in this paper is that cloud storage
clients might be locked-in to particular vendors due to prohibitive
switching costs. To quantify the cost of vendor lock-in, we assumed
that the Internet Archive is currently hosted on a single reasonably
priced provider from the list in Table 2 (in this case S3 Northern
California) and that they wish to switch to another leading com-
petitor that is slightly cheaper than the original (Rackspace).

Figure 7(a) shows the long term financial gain if the switching
were to happen at different months during the trace period. Com-
paring purely based on the pricing schemes of the two competi-
tors, it would seem that switching to the cheaper provider is always
profitable, and that switching from the onset would yield a maxi-
mum benefit of $10K (solid line). However, when we account for
the actual cost of switching the potential financial benefit is quickly
eroded, and at the end of the trace, changing vendors becomes more
than twice as costly as the maximum benefit that would have been
attainable in the beginning (dashed line).

We calculated the estimated cost of making the switch at the end
of each month during the trace period. For comparison, we also
simulated a RACS setup with three striping configurations using
providers with comparable prices, and we estimated the cost of mi-
grating between our choice of providers from within RACS. The
cost of switching vendors was estimated by calculating the cost of



S3 USA,EU | S3 N. CA | Rackspace | GoGrid | Nirvanix | EMC Atmos
Data transfer in (GB) $0.10 $0.10 $0.08 - $0.18 $0.10
Data transfer out (GB) $0.15 $0.15 $0.22 $0.29 $0.18 $0.25
Storage (GB/month) $0.15 $0.165 $0.15 $0.15 $0.25 $0.15
put and list requests (per 1000) $0.01 $0.011 ok - - -
get and other requests (per 10000) | $0.01 $0.011 - - - -

(- no charge. **put requests free for objects above 250kB. delete requests are free)

Table 2: Simplified pricing schemes of different cloud storage providers.

Cost in $K

Cost in $K

Cost in $K

T T T T T 250 T T T T T
DuraCloud —— DuraCloud ——
18 b RACS (m=4,n=5) -~ | RACS (m=4,n=5) - -
RACS (m=6,n=7) - RACS (m=6,n=7) -
16 L RACS (m=8,n=9) ] 200 L RACS (m=8,n=9) |
Amazon S3N.CA ---— 7~ _ SO Amazon S3N. CA ————-
Amazon S3 -- . - GoGrid Cloud Storage -----
14 | Amazon S3 EU - - 1 s Rackspace Cloud Files ~- -~
GoGrid Cloud Storage c Amazon 83 -----
12 | Rackspace Cloud Files -~ A % 150 Amazon S3 EU - B
o
ol | 9
2
8 1 2 o0}
£
6 i 3
4+ g 50
2L 4
0 . . . . . . 0 f . . . . .
Nov/2007  Feb/2008 May/2008  Aug/2008  Nov/2008  Feb/2009  May/2009 Nov/2007  Feb/2008 May/2008 Aug/2008 Nov/2008  Feb/2009 May/2009
Date Date
(a) Monthly costs with different storage providers (b) Cumulative costs with different storage providers
Figure 5: Estimated monthly and cumulative costs of hosting on the cloud
20 T 20 T
Bandwidth In exxxz= Bandwidth In &xxx=
Bandwidth Out s Bandwidth Out e
Storage e Storage
15 4 15 ~
x
©“
10 | 1 £ 10} p
17}
Q
[$)
5t g 5t 1
0 0
Oct/2007 Mar/2008 Aug/2008 Jan/2009 Jun/2009 Oct/2007 Mar/2008 Aug/2008 Jan/2009 Jun/2009
Date Date
(a) Monthly costs breakdown with Amazon S3 (b) Monthly costs breakdown with RACS(m=4,n=5)
20 T 20 T T
Bandwidth In exxxz= Bandwidth In &xxx=
Bandwidth Out s Bandwidth Out e
Storage mmm— Storage mmmm—
15 4 15 ~
x
©“
10 | 4 £ 10t <
17}
8 B
5t g 5 1
0 0
Oct/2007 Mar/2008 Aug/2008 Jan/2009 Jun/2009 Oct/2007 Mar/2008 Aug/2008 Jan/2009 Jun/2009
Date Date

(c) Monthly costs breakdown with RACS(m=8,n=9) (d) Monthly costs breakdown with DuraCloud

Figure 6: Breakdown of cloud storage costs
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Figure 7: The cost of switching the Internet Archive’s storage provider

taking the data out of the old provider and writing it to the new
provider. Figure 7(b) shows the switching costs at each month for
all the configurations.

Figure 7 highlights the cost of switching vendors, which are pro-
hibitive if using a single provider, but manageable with RACS.
Even though Figure 5 shows that the monthly cost using cloud stor-
age for this trace to be just below $10K, the cost of switching ven-
dors continuously grows to exceed $23K at the end of the trace
period for a single provider (Figure 7(b)). The cost of switching in-
creases as time goes by due to the increase in the size of the data
stored at the provider as shown in Figure 6. This implies that the
longer an organization stays with a more expensive cloud provider,
the more costly it will be for them to switch to another vendor
down the road. Alternatively, Figure 7(b) shows that by striping
data across multiple vendors, the cost of switching providers in
RACS is severely reduced to just below $3K at the end of the trace
period, a factor of seven reduction in the cost to switch.

4.4 Tolerating Price Hikes

In this section, we analyze tolerating increases in price without
switching storage providers. We assume a hypothetical scenario
where a single provider doubles its pricing scheme halfway through
the trace period. In such a scenario, RACS can be used to serve read
operations from cheaper providers.

Figure 8 shows the effects of a price hike on hosting on a sin-
gle provider and using multiple RACS configurations. As expected,
striping data across a larger number of providers results in the great-
est dampening of the hike. Even an (m = 4,n = 5) coding, which is
possible today, reduces the effects of a potential drastic price hike.
Coupled with the low cost of switching vendors as shown in Fig-
ure 7(b), clients can use RACS to insure themselves against poten-
tial mischievous behavior from their storage providers. As a result,
RACS gives more control back to the client to switch providers
when they see fit, and protects them from (economic) failures.

S. PROTOTYPE EVALUATION

To evaluate our RACS prototype implementation, we ran several
benchmarks with various (m,n) values to determine the operational
overhead incurred by RACS. We also tested the response time of
RACS against Rackspace to confirm that RACS does not introduce
unacceptable latency.

Ratio to base single provider cost
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Figure 8: Tolerating a vendor price hike

5.1 Benchmarks

Our benchmarks use the backup tool Cumulus [38] to back up
a user’s home directory to the cloud. They were run using a sin-
gle RACS proxy running on the client machine. All repositories
were backed by Amazon S3 to obtain an apples-to-apples compari-
son between operation counts (in real-world usage, of course, using
the same storage provider for every repository negates the purpose
of RACS). ZooKeeper was disabled, since there was only a single
client. Although we used S3 for the benchmarks, we also estimate
the cost of using Rackspace repositories instead, based on mea-
sured bandwidth from S3. Note that, although S3 objects can be
copied inside of S3 without incurring bandwidth charges, we did
not do this—to move objects between repositories, we downloaded
and re-uploaded them.

The benchmarks are as follows:

Upload snapshot The Cumulus backup tool stores backup snap-
shots on Amazon S3. Cumulus packs files into large seg-
ments to reduce the number of requests sent to S3, and com-
presses the segments before uploading them. Our experiment
used Cumulus to take a snapshot of workstation home direc-
tories totaling about four gigabytes. After compression, the
snapshot consisted of 238 segments ranging from four to six
megabytes each, for a total of 1.2 gigabytes. Cumulus up-
loads each segment



NoRACS (23) &5 (6.7

NoRACS (23) &5 (5,7

put and list requests 241 731 1209 1747 put and list requests 247 247 247 247
get requests 240 485 485 487 get requests 243 241 243 243
Data Transfer In (MB) 1199 1811 1486 1656 Data Transfer In (MB) 1211 610 306 244
Data Transfer Out (MB) 20 34 34 28 Data Transfer Out (MB) 1214 618 316 242
S3 One-time cost (USD) $0.12 $0.19 $0.16 $0.18 S3 Cost (USD) $0.32 $0.16  $0.09 $0.07
RS One-time cost (USD) $0.10 $0.15 $0.12  $0.14 RS Cost (USD) $0.36 $0.18  $0.09  $0.07
Monthly cost (USD) $0.18 $0.27 $0.22 $0.24 S3 Cost (rel.) 1 0.51 0.26 0.21
One-time cost (rel.) 1 1.55 1.33 1.5

Monthly cost (rel.) 1 1.51 1.24 1.38

Table 3: Upload Snapshot Benchmark. Amazon S3 and esti-
mated Rackspace (RS) costs. Monthly cost is the same for both.

NoRACS (23) 45 (57

put and list requests 4 4 4 4

get requests 243 482 972 1215
Data Transfer In (MB) 28 30 30 31

Data Transfer Out (MB) 1191 1235 1263 1210
S3 Cost (USD) $0.20 $0.21  $0.21  $0.21
RS Cost (USD) $0.26 $0.27 $0.27 $0.26
S3 Cost (rel.) 1 1.04 1.06 1.02

Table 4: Restore Snapshot Benchmark. Amazon S3 and esti-
mated Rackspace (RS) costs.

Vendor Migration With the backup snapshot already loaded into
the cloud, we instruct the RACS server to migrate the entire
contents of one repository to a new repository. This simulates
the scenario of leaving a vendor in the case of economic fail-
ure or new opportunity.

Restore snapshot Retreives all segments for a particular snapshot
from the cloud storage repository (i.e. use RACS to get each
segment), then unpacks each segment locally into files to give
a user a file system view of the snapshot.

For each run, we collect the metrics used to determine prices for
Amazon S3 USA (see Table 2), and estimate the cost of the trial.

Table 3 shows the relative cost of running RACS for a Cumulus
backup compared to a baseline without RACS. RACS issues many
more requests, but the cost of this benchmark is dominated by large
uploads. There are no great surprises with this benchmark; we ex-
pect RACS uploads to use a factor of n/m greater bandwidth and
storage than the baseline, and the total cost reflects this. It is of in-
terest, though, to see how much more expensive the three RACS tri-
als are compared to the baseline, with (m = 4,n = 5) being the most
feasible. Obviously it is desirable to bring n/m as close to one as
possible. Using only Rackspace repositories would have been less
expensive for this trial because Rackspace charges $0.08 per GB
upload as opposed to Amazon’s $0.10. We did not collect data for
incremental backup snapshots, but we would expect them to adhere
to the same costs relative to the baseline as the full snapshot up-
load. One side-effect of RACS appears to be improved bandwidth
saturation of a client that issues serial put requests. We observed
this with Cumulus, which had dips in network utilization between
sending objects.

In Table 4, we see the results of downloading the backup snap-
shot from the cloud. This consists almost exclusively of get re-
quests, which we expect to consume roughly the same bandwidth
as the baseline plus additional overhead due to the multiplicative

Table 5: Vendor Migration Benchmark. Amazon S3 and esti-
mated Rackspace (RS) costs.
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Figure 9: How long it takes RACS and Rackspace to handle
object put and get requests, as a function of object size. All re-
sponse times averaged over four runs.

increase in the number of requests. It is clear that RACS is much
more flexible for applications that favor get requests.

Table 5 confirms that RACS does indeed reduce the cost of ven-
dor migration, giving consumers greater mobility in the market-
place and more leverage with their providers. The cost of switching
providers under RACS is roughly 1/m that of the baseline. Note
that the number of requests is not increased because RACS is sim-
ply copying data from one repository to another.

5.2 Performance

Figure 9 compares the responsiveness of RACS to that of a di-
rect Rackspace connection. For this experiment, RACS was us-
ing a (2,3) configuration backed by three Rackspace repositories.
RACS and the client were on the same machine at Cornell. Per-
haps surprisingly, RACS does not lag behind. We attribute this to
parallelism: Even though RACS is uploading 50% more data for
put requests after erasure coding, it saves time by running reposi-
tory queries concurrently.

RACS’ major CPU expense is erasure coding. The prototype
uses the Zfec [29] Reed-Solomon erasure coding library. On 2 GHz
Core 2 Duo machine, we clocked Zfec encoding at a rate of 95
MB/sec, and decoding 151 MB/sec, using only one CPU core. We
conclude that erasure coding is not likely to become a bottleneck
until gigabit ethernet speeds are involved. Our RACS proxy’s CPU
usage hovered at around 25% during the benchmarks. Beyond these
speeds, Distributed RACS can be used to scale beyond the limita-
tions of one proxy. Alternately, we might choose to use more ef-
ficient erasure codes, such as those used by RAID 6, to increase



erasure coding throughput—albeit at a loss of configurable (m,n)
parameters.

Distributed RACS has been tested with two concurrent RACS
proxies sharing a single remote ZooKeeper server. The extra over-
head was negligible, except when contention forced requests to the
same key to be serialized. The contention overhead could be re-
duced by using an even finer-grained locking system able to con-
trol access to individual repositories while guaranteeing external
consistency, although the potential for long waits and serialized ac-
cess is fundamental. RACS could also hypothetically buffer waiting
events on the proxy and return immediately to the client, giving the
client an illusion of not needing to wait, at the risk of data loss if
the RACS proxy crashes.

6. RELATED WORK

As more (and larger) organizations look to the clouds to offload
their storage needs, it is imperative that these organizations be able
to change storage providers, for any reason, without prohibitive
costs (monetary, time, etc). RACS attempts to reduce the cost of
switching storage providers.

The main underlying technique that RACS employs to provide
its flexibility is RAID at the cloud storage level, which is increas-
ingly common. HAIL [17] uses RAID-like techniques across stor-
age vendors to ensure high-availability and integrity of data stored
in the clouds. Peer-to-peer storage [19-21, 32] have employed
RAID-like techniques to ensure the availability and durability of
data. The difference between systems like HAIL, peer-to-peer stor-
age systems, and RACS is that RACS focuses on economic failures
and how to prevent them without excessive overheads, while still
benefiting from greater availability and durability of other RAID-
like systems.

For storage providers, there are many services for a system like
RACS to choose from. We have divided these services into three
broad classes. First, high-end cloud storage services such as Ama-
zon S3, Rackspace Cloud Files, GoGrid Cloud Storage, EMC At-
mos Online, Nirvanix SDN, and IronMountain, to name a few, are
all geared towards hosting and serving storage requests for other
services. For example, Twitter and Smugmug use S3. Second, file
storage and sharing services targeted at companies to store and
share files internally, such as Google Docs Premium and Box.net.
These providers are not meant to support other external services or
act as the building block for a web application like Twitter or Smug-
mug, but are intended to be an online repository for people to share
their work files. Third, personal file backup services like Mozy and
Microsoft SkyDrive that are aimed at individuals who want to back
up their files online. The current design of RACS targets the first
of these categories. For example, our trace of the Internet Archive
shows that they serve approximately 300GB a month of outgoing
FTP GETs (outgoing bandwidth being served to clients). However,
one can imagine that in a future work we can extend RACS to sup-
port multi-tier storage.

Finally, there are an increasing number of services, such as Du-
raCloud and Nasuni, that lie between cloud storage providers and
clients. Such services use diversity and redundancy to provide flex-
ibility, availability, and durability to their clients.

7. CONCLUSIONS

The cloud services marketplace is in its infancy. And while it
may be at the forefront of technology, as a market—an economic
entity—it is not so unique. The commoditization of cloud services
has brought with it the characteristics of an economy, good and
bad. In cloud computing, it is fitting that technological devices

should be used to address economic problems, and that is what
RACS is: A simple application of technology to change the struc-
ture of a market. In RACS, consumers have a tool that can be used
to adjust the trade-off between overhead expense and vendor mo-
bility. In the design of RACS, we have applied erasure coding to
a different type of failure (economic) than it is usually used for
in storage systems. We have built a working implementation and
run microbenchmarks, and we have simulated larger experiments
on real-world traces. We can conclude from these simulations and
experiments that RACS enables cloud storage customers to explore
trade-offs between overhead and mobility, and to better exploit new
developments in the fast-paced cloud storage marketplace.

8. FUTURE WORK

We have considered cloud storage as a stand-alone product in
this paper. But the cloud is an ecosystem: It is increasingly common
for providers to offer a whole range of complementary services
such as computing and content distribution. Naturally, providers
arrange these services to work well with one another; for exam-
ple, the virtual compute nodes of Amazon EC2 can read from and
write to Amazon S3 storage with low latency and no bandwidth
charges. This trend creates a different kind of vendor lock-in that
is much harder to break out of. After all, what good is mobility in
the storage arena when you are tied to a provider’s virtual machine
offerings? This line of reasoning is one direction that future work
on RACS could take: Making other kinds of offerings more mobile,
and moving multiple services together.

Another direction is the path of heterogeneous repositories:
Can RACS make use of a desktop PC as one repository, a cloud
providers as second, and a cluster as a third? Thus far, we have
made the implicit assumption that cloud providers are infinitely
provisioned. Or, at least, that their capacities exceed those of the
clients they serve. But if capacity and limits were assigned to repos-
itories, RACS could possibly facilitate policies such as, “Serve
from the local repositories up to their capacities, and then use the
cloud when demand is high”.

9. AVAILABILITY

The RACS source code is published under the BSD license and
is freely available http://www.cs.cornell.edu/projects/racs
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