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Abstract

Data centers avoid IP Multicast because of a series of
problems with the technology. We proposeDr. Multi-
cast (MCMD), a system that maps IPMC operations to
a combination of point-to-point unicast and traditional
IPMC transmissions. MCMD optimizes the use of IPMC
addresses within a data center, while simultaneously re-
specting an administrator-specified acceptable-use pol-
icy. We argue that with the resulting range of options,
IPMC no longer represents a threat and can therefore be
used much more widely.

1 Introduction

As data centers scale up, IP multicast (IPMC) [15] has
an obvious appeal. Publish-subscribe and data distribu-
tion layers [7, 8] generate multicast distribution patterns;
IPMC permits each message to be sent using a single
I/O operation, reducing latency both for senders and re-
ceivers. Clustered application servers [1, 5, 4] need to
replicate state updates and heartbeats between server in-
stances. Distributed caching infrastructures [2, 6] need
to update cached information. For these and other uses,
IPMC seems like a natural match.

Unfortunately, IPMC has earned a reputation as a poor
citizen. Part of the problem relates to scalability; routers
are stressed by the need to maintain routing state and per-
form costly per-group translations, and end-host NICs
fail to filter messages effectively beyond a few dozen
multicast addresses [23, 16]. Multicast is also perceived
as an unstable technology. The very property that makes
IPMC so attractive — its intrinsic asymmetry between
sending and receiving rates — also makes it dangerous
in the absence of regulatory mechanisms. Multicast re-
liability and flow control protocols are prone to ‘storms’
that can disrupt the entire data center. With management
of multicast use practically unsupported, administrators
choose to banish IPMC from their data centers.

Our paper introducesDr. Multicast (MCMD), a tech-
nology that permits data center operators to selectively
enable IPMC while maintaining tight control on its use.
Applications are coded against the standard IPMC socket
interface, but IPMC system calls are intercepted and each
group is translated to a set of unicast and IPMC ad-
dresses. This translation spans two extremes:

• A true IPMC address is allocated to the group.

• Communication to the group is performed using
point-to-point unicast messages to individual re-
ceivers.

The choice of translation is determined by acceptable-
use policies designed to prevent multicast instability as
well as to optimize IPMC usage. MCMD allows admin-
istrators to define policies that dictate access control and
IPMC usage rules for groups and nodes in the data cen-
ter. In accordance with these policies, MCMD computes
the best allocation of IPMC addresses to groups (or to
overlapping sets of groups), adapting as usage patterns
change over time. MCMD tracks membership and dis-
tributes translations to senders using a gossip-based con-
trol plane that’s robust, timely, and scalable in the num-
ber of groups in the system.

Users benefit from MCMD in several ways:

• Policy: Administrators can centrally impose traffic
policies within the data center, such as limiting the
use of IPMC to certain machines, placing a cap on
the number of IPMC groups in the system, or elim-
inating IPMC entirely.

• Performance: MCMD approximates the perfor-
mance of IPMC, using it directly where possible.

• Transparency and Ease-of-Use:Applications ex-
press their intended communication pattern using
standard IPMC interfaces, rather than using hand-
coded implementations of what is really an admin-
istrative policy.
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Figure 1: Receiver packet miss rate vs. number of IPMC
groups joined

We will consider the problems of IPMC in data centers in
the following section. The acceptable-use policy primi-
tives and architecture of MCMD are discussed respec-
tively in sections 3 and 4. We formalize the optimization
problem of allocating the limited number of IPMC ad-
dresses, and provide and evaluate an effective heuristic
for solving it in section 5. We experimentally evaluate
components of MCMD in section 6, and discuss related
work in section 7. Section 9 concludes.

2 IPMC in the Data Center

Modern data centers often have policies legislating
against the use of IPMC, despite multicast being the nat-
ural expression of a common data communication pat-
tern seen in a wide range of applications. This reflects
a number of pragmatic considerations. First, IPMC is
perceived as a potentially costly technology in terms of
performance impact on the routing and NIC hardware.
Second, applications using IPMC are famously unsta-
ble, running smoothly in some settings and yet, as scale
is increased, potentially collapsing into chaotic multi-
cast storms that disrupt even non-IPMC users. We know
of several large Internet sites and vendors where IPMC
was disabled after experiencing major disruptions due to
storms.

Routers, switches and end-host NICs do not scale to
large numbers of groups. For example, a typical NIC
maintains a set of Ethernet mappings for joined groups
and forwards packets to the kernel only if the destination
group maps to one of these Ethernet addresses. Multicast
IP addresses are mapped to Ethernet addresses by placing
the low-order 23 bits of the IP address into the low-order
23 bits of the Ethernet address; as a result, more than one

IP address can map to an Ethernet address [15]. With
large numbers of groups, the NIC may accept undesired
packets that the kernel must then discard.

Figure 1 illustrates the issue. In this experiment, a
multicast transmitter transmits on2k multicast groups,
whereas a single receiver listens tok multicast groups.
We varied the number of multicast groupsk and mea-
sured the packet loss at the receiver. The transmitter
transmits 8,000 byte packets at a constant rate of 15,000
packets/sec, spread across all the groups. The receiver
thus expects to receive half of that, i.e. 7,500 packets/sec.
The receiver and transmitter have 1Gbps NICs and are
connected by a switch with IP routing capabilities. The
experiments were conducted on a pair of single core
Intel R© Xeon

TM
2.6GHz machines. The figure shows that

the critical threshold that the particular NIC can handle
is roughly 100 IPMC groups, after which throughput be-
gins to fall off.

The performance of modern 10Gbps switches was
evaluated in a recent review [22] which found that their
IGMPv3 group capacity ranged between as few as 70 and
1,500. Fewer than half of the switches tested were able to
support 500 multicast groups under stress without flood-
ing receivers with all multicast traffic. While future hard-
ware may allow networks and end-hosts to support large
numbers of multicast groups, existing data centers run-
ning on commodity components are constrained in this
respect.

The perception that IPMC is an unstable technology
is harder to demonstrate in simple experiments. Below
are some common scenarios encountered in modern data
center deployments:

• Multicast Storms— An application uses IPMC to
send to large number of receivers at a substantial
data rate. Some phenomenon now triggers loss. The
receivers detect the loss and solicit retransmissions,
but this provokes a further surge, exacerbating the
original problem. A “multicast storm” ensues.

• Multicast DoS — An incorrectly parameterized
loop results in a sender transmitting data to an
IPMC group at high speeds, overloading all the re-
ceivers in the group.

• Traffic Magnets— A receiver in a particular clus-
ter within the data center inadvertently subscribes to
one or more high data-rate groups used by a differ-
ent cluster within the data center; the resulting flood
of incoming traffic saturates the bandwidth connect-
ing this cluster to the main data center topology.

• Scattershot Senders— An application running on a
node is supposed to transmit data to the IPMC group
239.255.0.1; however, an off-by-one programming
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Figure 2: Two under-the-hood mappings in MCMD, a
direct IPMC mapping on the left and point-to-point map-
ping on the right.

bug makes it send data to group 239.255.0.2 instead,
spamming machines subscribed to that group with
packets that need to be discarded.

The root cause of these problems is the free-for-all na-
ture of IPMC — any machine can join or send data at any
speed to any group in the system. IPMC provides abso-
lutely no regulatory mechanisms for multicast usage.

3 Acceptable-Use Policy

The basic operation of MCMD is simple. It translates an
application-level multicast address used by an applica-
tion to a set of unicast addresses and network-level mul-
ticast addresses, as shown in figure 2. The translation is
governed by an acceptable-use policy for the data center
as defined by the system administrator.

In this section we describe the policy primitives sup-
ported by MCMD, and demonstrate how scalability and
stability concerns can be mitigated by constructing a
high-level acceptable-use policy made from those build-
ing blocks.

3.1 Policy Primitives

We use the following notation while describing the prim-
itive operations:

• Logical or Application-level groups by upper-case
letters:A, B, C ...

• Physical or Network-level groups by lower-case let-
ters:a, b, c ...

An arbitrary node is denoted by the lettern. If the phys-
ical groupa is included in the set of unicast and multi-
cast addresses that a logical groupA is translated into by
MCMD, we say that the physical groupa is a transport
for the logical groupA.

In reality, identifiers for both logical and physical
groups are independently drawn from the set of class D
IP addresses. For convenience, we assume that the phys-
ical and logical groups represented by the same letter
are mapped to the same IP address; for example, logical
groupA and physical groupa are both identified by the
IP address 239.255.0.1. In addition, while discussing un-
modified IP Multicast, we ignore the existence of logical
groups and deal only with nodes and physical groups.

By default, no node in the data center is allowed to
send to or join any logical groups. The primitives serve
the purpose of selectively allowing nodes to join and
send to logical groups, as well as mandating when physi-
cal IP Multicast groups can be used as transports for log-
ical groups.

MCMD understands a small set of primitives to spec-
ify policies:

• allow-join(n, A) — Noden is allowed to join the
logical groupA.

• allow-send(n, A) — Noden is allowed to send data
to the logical groupA.

• allow-IPMC(n, A) — Node n is allowed to use
physical IP Multicast groups as transports for the
logical groupA.

• max-rate(n, A, X) — n is allowed to send data at
a maximum rate ofX KB/s to any of the physical
addresses that are mapped to the logical groupA.

• max-IPMC(n, M ) — n is allowed to join at most
M physical IP Multicast groups.

• total-IPMC(M ) — A maximum ofM IPMC groups
can be used within the data center.

Our system enforces these policy primitives effi-
ciently; by intercepting socket system calls and control-
ling the mapping from logical groups to physical ad-
dresses, it can prevent nodes from joining or sending to
logical groups, as well as limit the sending rate to these
groups. Further, the use of IPMC can be enabled selec-
tively on a per-group and per-node basis. We believe that
this compact set of primitives is sufficient to mitigate
most if not all vulnerabilities of multicast communica-
tion within data centers.

How does the administrator determine the right set
of access control permissions for nodes? One simple
scheme involves mapping applications within the data
center to the specific nodes they run on, and then giving
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those nodes allow-join or allow-send permissions to the
groups used by that application. Similarly, the adminis-
trator selectively enables IPMC usage for applications by
applying allow-IPMC permissions to the corresponding
nodes and groups.

While MCMD accepts a list of the primitive opera-
tions as input, we expect data center administrators to
use higher level tools — such as IBM’s Tivoli product
[3] — that allow them to define acceptable-use policies
in large systems. These policies ‘compile’ into the lower
level primitives that MCMD understands.

3.2 Policy Examples

The policies defined by the administrator resolve the sta-
bility problems of IP Multicast by implementing a form
of access control for groups. In addition, they mitigate
the scalability concerns of IPMC in two ways — by plac-
ing a limit on the total number of IPMC addresses in use
within the data center and by each node individually, and
by using these IPMC groups intelligently for large, high
rate application-level groups that benefit the most.

Are the simple primitives sufficient to prevent the sta-
bility problems of IPMC? We consider the instability
scenarios outlined earlier:

• Cure for theMulticast Stormscenario: While it
is difficult to prevent unstable reliability protocols
running within a group from impacting the receivers
in that group, MCMD can isolate the slowdown to
just that group by either disabling IPMC transports
for it or placing a rate cap on their usage.

• Cure for theMulticast DoSscenario: By limiting
the maximum rate at which any sender is allowed
to transmit data to a particular group, we can pre-
vent the scenario where a single machine acciden-
tally launches a DoS attack on a group by sending
data to it as fast as possible.

• Cure for theTraffic MagnetandScattershot Sender
scenarios: Strict access control is sufficient to pre-
vent both these cases. Nodes can longer join or send
data to arbitrary multicast groups.

4 Design and Implementation

The MCMD architecture has two components, as seen on
figure 3:

• A library module responsible for themechanismof
translation. It intercepts outgoing multicast mes-
sages and instead sends them to a set of unicast and
multicast destinations. This module isstateless.

Figure 3: Overview of the MCMD architecture

• An MCMD agentruns as a daemon process on every
node — with a single designated instance acting as
a leader— and has two parts.(i) A mappingmod-
ule responsible for thepolicy of translation. This
module isstateful; it maintains the translation from
each application-level group to a set of unicast and
network-level multicast addresses. It also stores ac-
cess control lists and membership/sender sets for
application-level groups.(ii) A control planethat
uses a combination of gossip and urgent notifica-
tions to replicate the state of the mapping module
on each agent in the system.

We spend the remainder of this section discussing the
design and implementation of each of these components
in detail.

4.1 Library Module

Making MCMD easy to use has been the primary goal
in our design. A simple interface is necessary for a
seamless transition from existing multicast systems to
MCMD. The library module exports anetinet/in.h
library to applications, with interfaces identical to the
standard POSIX version. By overloading the relevant
socket operations, MCMD can intercept join, leave and
send operations. For example:

• setsockopt() is overloaded so that an in-
vocation with the IPADD MEMBERSHIP or
IP DROPMEMBERSHIP option as a parameter
results in a ‘join’ message being sent to the map-
ping module. In this case, the standard behavior of
setsockopt() – generating an IGMP message –
is suppressed.
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• sendto() is overloaded so that a send to a class D
group address is intercepted and converted to multi-
ple sends to a set of addresses. The acceptable-use
policy can limit the rate of sends.

As mentioned, the library module is essentially stateless;
it interacts with the mapping module via a UNIX socket
to periodically pull — and cache — two pieces of state:
the list of IP Multicast groups it is supposed to join, and
the translations for application-level groups it wants to
send data to. The library module can receive invalida-
tion messages from the mapping module, causing it to re-
fresh its cached entries. Simultaneously, it pushes infor-
mation and statistics about grouping and traffic patterns
used by the application to the mapping module. This in-
cludes an exponential-average of the message rate for the
application-level group.

Additionally, the library module uses a custom multi-
send system call implemented in the Linux 2.6.24 kernel
— a variant of thesendto() call that accepts a list of
destinations for the message. As a result, when the appli-
cation sends a message to an application-level group and
the library module translates the operation into a multi-
send to a set of physical addresses, it can send the mes-
sage to these addresses in a single efficient system call.

4.2 The MCMD Agent

The agentis a background daemon process running on
every node in the system. Each agent instance acts as
a mapping module, maintaining four pieces of state that
are globally replicated on every agent in the system —
we refer to these collectively as theagent state:

• Membership sets for all the nodes in the system —
essentially, a map from nodes to the application-
level groups they are receivers in.

• Sender sets for all the nodes in the system — a map
from nodes to the application-level groups they are
senders to.

• Group translations — a map from application-level
groups to sets of unicast and multicast network ad-
dresses.

• Access control lists — two separate maps determin-
ing which application-level groups each node in the
system is allowed to receive data in and send data
to, respectively.

Each agent in the system has read-access to a locally
replicated copy of the agent state. However, write-access
to the agent state is strictly controlled. The first two items
of the agent state can be written to only by the nodes con-
cerned — a node can change only its own membership

set or its sender set. The last two items of the agent state
can be modified only by the leader agent. When an agent
— leader or otherwise — writes to its local copy of the
agent state, the change is propagated to other agents in
the system via the control plane. Since each item in the
agent state has exactly one writer, there are no conflicts
over multiple concurrent updates to the agent-state.

The leader agent allocates IPMC addresses to differ-
ent sets of machines in the data center, using the group
membership information, sender information and access
control lists in its local state to determine the best set of
translations for the system. Once it writes these trans-
lations to its local state, the control plane disseminates
the updates to other agents in the system, which read the
translations off their local replicated copy of the agent
state and direct their corresponding library modules to
join and leave the appropriate IGMP groups. The process
followed by the leader while allocating network-level
IPMC resources to application-level multicast groups is
the subject of section 5.

We have described a setup where each node essentially
has a global view of the system; this approach has several
benefits, including robustness to failure, high availability
and extremely fast normal-case operation. The size of
this global view is not prohibitive; for example, we can
store the agent state for a 1,000-node data center within
a few MB of memory.

4.3 The MCMD Control Plane

The MCMD control plane is based on a simple and pow-
erful gossip-based failure detector identical to the one
described by Van Renesse [25]. Each node maintains its
own version of a global table, mapping every node in the
data center to a time-stamp or heartbeat value. EveryT
milliseconds, a node updates its own heartbeat in the map
to its current local time, randomly selects another node
and reconciles maps with it. The reconciliation function
is extremely simple – for each entry, the new map con-
tains the highest time-stamp from the entries in the two
old maps. As a result, the heartbeat timestamps inserted
by nodes into their own local maps propagate through the
system via gossip exchanges between pairs of nodes.

When a node notices that the time-stamp value for
some other node in its map is older thanT1 seconds, it
flags that node as ‘dead’. It does not immediately delete
the entry, but instead maintains it in a dead state forT2

more seconds. This is to prevent the case where a deleted
entry is reintroduced into its map by some other node.
After T2 seconds have elapsed, the entry is truly deleted.

The comparison of maps between two gossiping nodes
is highly optimized. The initiating node sends the other
node a set of hash values for different portions of the
map, where portions are themselves determined by hash-
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ing entries into different buckets. If the receiving node
notices that the hash for a portion differs, it sends back
its own version of that portion. This simple interchange
is sufficient to ensure that all maps across the system are
kept loosely consistent with each other. An optional step
to the exchange involves the initiating node transmitting
its own version back to the receiving node, if it has en-
tries in its map that are more recent than the latter’s.

Crucially, the failure detector can be used as a gen-
eral purpose gossip communication layer.Nodes can in-
sert arbitrary state into their entries to gossip about, not
just heartbeat timestamps. For example, a node could in-
sert the average CPU load or the amount of disk space
available — or, more relevantly, its agent state — and
eventually this information propagates to all other nodes
in the system. The reconciliation of entries during gos-
sip exchanges is still done based on which entry has the
highest heartbeat, since that determines the staleness of
all the other information included in that entry.

Using a gossip-based failure detector as a replication
layer for agent state has many benefits. It provides re-
silience and robustness for agent state, eliminating any
single points of failure. It provides clean semantics for
data consistency – a node can write only to its own entry,
eliminating any chance of concurrent conflicting writes.
In addition, a node’s entry is deleted throughout the sys-
tem if the node fails, allowing for fate sharing between
a node and the information it inserts into the system.
For example, when a node fails, its membership and
sender sets in the agent state are automatically garbage-
collected.

Urgent Notifications

The Achilles heel of gossip at large system sizes isla-
tency— the time it takes for an update to propagate to
every node in the system. To mitigate these propagation
delays, MCMD uses urgent notifications in three cases:
when a new receiver joins an application-level group,
when a new sender starts transmitting to an application-
level group, and when the leader agent generates a new
translation for an application-level group.

• When a new receiver joins a group, its agent up-
dates the local version of agent state and simultane-
ously sends unicast notifications to every node that
is listed in the agent state as a sender to that group.
As a result, senders that are using multi-send unicast
to transmit data to the group can immediately in-
clude the new receiver in their transmissions. In ad-
dition, the new receiver’s agent contacts the leader
agent for updates to the sender set of that group; if
the leader reports back with new senders not yet re-
flected in the receiver’s local copy of the agent state,
the receiver’s agent sends them notifications as well.

• When a new sender starts transmitting to a group,
the agent running on it updates the sender set of the
group on its own local version of the global agent
state, and simultaneously sends a notification to the
leader agent. The leader agent responds with the
latest version of the group membership information
for that particular group.

• When the leader agent creates or modifies a trans-
lation, it sends notification messages to all the af-
fected nodes — receivers who should join or leave
IPMC groups to conform to the new translation, and
senders who need to know the new translation to
transmit data to the group. These messages cause
their recipients to ‘dial home’ and obtain the new
translation from the leader.

Importantly, the first two cases involve a single uni-
cast exchange with the leader, imposing load on it that
increases linearly with the level of churn in the system.
The task of updating other interested nodes in the system
is delegated to the node that caused the churn event in
the first place; this ensures that nodes can only disrupt
themselves by changing membership and sender sets at a
high rate.

5 Theoretical Considerations

We now explain how MCMD maps network-level IP
multicast addresses to application-level groups. Infor-
mally, given an acceptable-use policy and complete in-
formation about membership of receivers in application-
level groups, the problem is the following.

• Translate each application-level group into a min-
imal number of physical addresses (multicast and
unicast) while respecting the policy constraints.
Moreover, multiple application-level groups with
identical membership can be assigned to use the
same physical IPMC group, which we refer to as
collapsingsubscription overlaps.

• Minimize the bandwidth overhead on the network.
Network overhead can be reduced by allocating
physical IPMC addresses to larger logical groups or
those with high message rates instead of smaller or
less active ones.

Furthermore, we wish to find a solution that optimizes
the use of IPMC resources.

We formalize this as a multi-objective optimization
question that has two parts:(i) collapse subscription
overlaps into as few groups as possible, and(ii) assign
physical IPMC to the collapsed groups as to minimize
bandwidth overhead on the network. Feasible solutions
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must obey the limits and constraints specified by the pol-
icy. We show that the optimization problem isNP -
complete in the general case, even if we only consider
the collapsing of subscriptions. A simple heuristic for the
first part of the problem is to find duplicate groups, and
merge them. To evaluate this approach, we contemplate
what kinds of subscription patterns might arise in a data
center. We don’t expect this simple method to perform
well if subscriptions are uniformly random, or driven en-
tirely by human interests. However, a trace from a prod-
uct used in many data centers suggests that real-world
use of multicast produces numerous duplicate groups, a
case in which this basic heuristic performs well. The sec-
ond part of our optimization algorithm assigns IPMC re-
sources to the collapsed groups to minimize bandwidth
overhead in an optimal fashion.

5.1 Model

We begin by discussing the policy constraints and mul-
ticast scalability concerns, and then formalize the obser-
vations into an optimization problem. In section 2 we
highlighted some IPMC scalability issues which are ad-
dressed by the policy primitives from section 3. Specifi-
cally:

• total-IPMC(MIPMC): the total number of network-
level IPMC groups used. A large number of groups
adversely affects the performance of routers and
switches.

• max-IPMC(n, Mn): the number of IPMC groups a
receivern can join effectively, that is, without caus-
ing the NIC to go into promiscuous mode.

For convenience, we will useMIPMC andMn to refer to
these limits.

The following factors also affect multicast scalability.

• The amount of filtering the receivers are required to
process, that is, the amount of redundant traffic they
receive.

• The number of duplicates transmissions required to
deliver messages to all intended recipients. This
also corresponds to the extra bandwidth incurred on
the network.

The relative importance of these factors depends on
whether CPU overhead due to filtering outweighs the
cost of extra bandwidth caused by duplicate transmis-
sions.

As an example, consider a pair of partially overlapping
groupsA andB, whereA has a high rate of traffic but
B has low rate. If we mergeA andB, we would use
only one physical multicast group and alleviate duplicate

transmissions from transmitters altogether, but at the cost
of members ofB − A having to filter out high rates of
traffic destined forA.

In what follows we assume that receivers do not per-
form any filtering for redundant or irrelevant packets.
Our reasoning is twofold.

• Imposing CPU loads on receivers can have unan-
ticipated consequences and potentially cause more
trouble than our system solves.

• As we will see, the problem of collapsing subscrip-
tion overlaps to minimize the number of groups is
already hard. The problem of merging groups with
similar subscription patterns to minimize duplicate
transmissions is even more general [9].

Furthermore, we will argue that a crucial opportunity
for reducing duplicate transmissions arises in replicated
components of multicast applications, an opportunity
that our heuristic exploits. We document the literature
that assumes filtering in section 7.

5.2 Problem Statement

Let L denote the set of application-level (logical) mul-
ticast groups, and setK = |L|. Let us assume that the
message transmission rate on logical groupk ∈ L is λk

messages per second,k ∈ L, andλ = [λ1, · · · , λK ].
Let P denote the set of processes, andN = |P |. Each

processn contributes a binary “subscription vector” of
lengthK, where a 1 in thekth position denotes the pro-
cess receives traffic from logical groupk.

Let us define the “subscription matrix”W = (wnk),
k ∈ L, n ∈ P , the rows of which are the processes’
subscription vectors:

wnk =

{

1 processn subscribes to logical groupk
0 otherwise

We would like to assign each logical groupk to one
or more multicast groups, some of which could then be
assigned to use physical IPMC and others made to use
point-to-point unicast. Let us denote the set of multicast
groups byG, with |G| = M . We will determine the
transport vectorT = (tm), m ∈ G, defined as:

tm =

{

1 if groupm should use physical IPMC
0 if m should use point-to-point unicast

The logical group to multicast group mapping matrix,
X = (xkm), k ∈ L, m ∈ G, is defined as:

xkm =

{

1 logical groupk is mapped tom
0 otherwise
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The group listening matrix,Z = (znm), n ∈ P, m ∈ G,
specifies to which multicast groups each process must
join

znm =

{

1 processn should join multicast groupm
0 otherwise

As argued previously, we require that each process re-
ceivesexactlywhat it needs, that is no filtering cost is
incurred. Moreover, we require that each process joins
no more thanMn multicast groups (i.e.,

∑

m∈G znm ≤
Mn, ∀n ∈ P ), as specified by the max-IPMC policy
primitive. We minimize the number of multicast groups
M necessary to reach these goals, and end up with the
following multi-objective optimization problem.

Definition (Exact Tiling). Find a set of mappingsX, Z
and a transport vectorT = (tm)m∈G such that:

min
X,Z

M (1)

min
X,Z,T

∑

m∈G

∑

k∈L

xkmλk

(

tm + (1 − tm)
∑

n∈P

znm

)

(2)

subject to the constraints:

∑

m∈G

znm · xkm − wnk = 0, ∀n ∈ P, ∀k ∈ L (3)

∑

m∈G

tm ≤ MIPMC (4)

∑

m∈G

znm ≤ Mn, ∀n ∈ P (5)

Objectives 1 and 2 reflect our primary and secondary
goals of respectively minimizing the total number of
multicast groups used, and the number of duplicate
transmissions (equivalent to minimizing bandwidth),
both in collapsed groups mapped to use physical IPMC
and for point-to-point unicast as defined byT . The order
of the objectives reflects the priority assigned to them.
Inequalities 3 and 5 reflect the zero filtering and NIC
capacity constraints, respectively. Inequality 4 makes
sure that no more thanMIPMC physical IPMC groups are
used in the network.

We discuss the two objectives of the Exact Tiling op-
timization problem separately.

• The first objective minimizes the number of groups,
which involves collapsing overlaps in the subscrip-
tions patterns. We show that this problem is hard in
the general case, devise a simple algorithm for find-
ing exact overlaps and discuss how well this heuris-
tic would do in data centers by looking at models
and a real-world trace.

• The second objective deals with determining which
collapsed groups should be allotted the potentially
sparse IPMC addresses so that network overhead is
minimized.

5.3 Collapsing Subscription Overlaps

To minimize the total number of multicast groups, the
primary objective of the optimization problem, we must
determine and collapse subscription overlaps between
groups or users into the subscription patterns. If a num-
ber of users all subscribe to the same set of topics, they
could all be assigned to use the same multicast group.

Theorem. The Exact Tiling problem isNP -complete,
even without the second objective.

Proof. The MINIMUM NORMAL SET BASIS (MNSB)
problem is stated as follows. Given a finite setA, and
S = {S1, . . . , Sl} with Si ⊆ A for 1 ≤ i ≤ l, find a
minimal collectionB of subsets inA such that for each
1 ≤ i ≤ l, Si equals the union of a pairwise disjoint
sub-collection inB.

We will show that MNSB≤P Exact Tiling. The feasi-
bility of an input can be checked in polynomial time eas-
ily by verifying the constraints, so Exact Tiling∈ NP .
Take a finite setA andS = {S1, . . . , Sl} with Si ⊆ A
for 1 ≤ i ≤ l. We will imagine we havel pro-
cesses, andA represents the set of logical groups. Let
P = {1, 2, . . . , l} bel processes such that processn is a
member of the logical groups inSn, formally

wik =

{

1 if k ∈ Si

0 otherwise

Setλi = 1 for all i ∈ P , andMi = ∞ for all i ∈ P .
Consider the output of Exact Tiling on this instance,

namely a set of groupsG and mappingsxkm andznm

such that
∑

m∈G znmxkm = wnk for all n ∈ P and
k ∈ A, with M = |G| minimized.

Let Bm = {k ∈ A | xkm = 1} for eachm ∈ G. We
claim thatB = {Bm | m ∈ G} is a minimal collection
of subsets ofA such that for eachn ∈ P , Sn is the union
of a pairwise disjoint sub-collection ofB.

First, B is indeed such a collection. For anyn ∈ P ,
we claim that

⋃

m∈G | znm=1 Bm = Sn. The expression
on the left hand side equals the set ofk ∈ A such that
xkm = znm = 1 or equivalentlyxkmznm = 1 for some
m ∈ G. By constraint 3 this is equivalent to the set of
k ∈ A such thatwnk = 1, which is exactlySn.

Second, supposeB is not minimal andB′ is a smaller
collection satisfying the above conditions. Then the
mappingsxkm andznm to the appropriate subsets inB′

are a feasible solution to the Exact Tiling problem that
uses fewer than|B| = M groups, contradicting our pri-
mary objective 1.
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Since MNSB isNP -complete [18], and the reduction
takes polynomial time, we have established that Exact
Tiling is anNP -complete problem.

This result is not too surprising. Instead of searching
for an optimal algorithm that is likely to have exponential
running time, we consider the following simple heuristic
we call MERGE-DUPLICATES: For each logical group
m, create a corresponding multicast groupm′ with the
same members. For each pair of multicast groupsm1

andm′
2, mergem′

1 andm′
2 into m′

1 if they have identical
member sets. The mapping setsX, Z follow trivially.

We would like to determine theexpectedperformance
of MERGE-DUPLICATES on multicast use in real-world
data centers. Due to the lack of publicly available trace
data-sets we must contemplate what these inputs might
look like. We will enumerate three types of models here.

Uniform Random Subscriptions

A basic idea for generating subscription patterns is to
randomly connect processes to logical groups. Consider
the following model. Assume there aren processes in a
system. For each ofn logical groups, we pick a num-
ber k uniformly at random between1 andn, and then
let random subset ofk processes subscribe to this logical
group. Then MERGE-DUPLICATES will have almost no
opportunity for collapsing subscription overlaps, as the
following theorem shows:

Theorem. The expected number of exact overlaps is a
constant less than 8 independent ofn.

Proof. We start by proving thatk2 ≤
(

n
k

)

for k ≤ n
2 and

n ≥ 7 by induction. The base case whenn = 7 follows
from inspection. Assumek2 ≤

(

n
k

)

for somen ≥ 7 and
k ≤ n

2 .
If k < n+1

2 thenk2 ≤
(

n
k

)

=
(

n+1
k

)

−
(

n
k−1

)

≤
(

n+1
k

)

,
with the convention that

(

n
−1

)

= 0. If k = n+1
2 then

k2 ≤ k2 + (k2 − 4k + 2) = 2(k − 1)2 ≤ 2
(

n
k−1

)

=
(

n
k

)

+
(

n
k−1

)

=
(

n+1
k

)

. Thus the statement holds true by
induction.

Let Nj denote the size of logical groupj. Let Aij in-
dicate event that logical groupsi andj overlap exactly,
in which caseAij = 1 and 0 otherwise. We wish to
bound the expected number of exactly overlapping logi-
cal groups,A =

∑

i<j Aij .
Clearly,E[Aij | Ni 6= Nj ] = 0. We have

E[Aij | Ni = Nj = k] =

(

n

k

)−1

.

Using the argument above, ifn ≥ 7 thenE[Aij | Ni =
Nj = k] ≤ 1

k2 for k ≤ n
2 , andE[Aij | Ni = Nj = k] ≤

1
(n−k)2 for k ≥ n

2 .

When the number of logical groups ism ≤ αn for
some constantα, we get

E[A] =
∑

i<j

E[Aij ]

=
∑

i<j

n
∑

k=1

E[Aij | Ni = Nj = k]P[Ni = Nj = k]

≤
∑

i<j

2

⌈n/2⌉
∑

k=1

E[Aij | Ni = Nj = k]
1

n2

≤
∑

i<j

2



6 +

⌈n/2⌉
∑

k=7

1

k2





1

n2

<
2

n2

(

m

2

)(

6 +
π2

6

)

< 8α2.

In particular, we haveE[A] < 8 whenm ≤ n.

Human Preferences

The subscriptions to logical groups of a multicast sys-
tem could be driven by human interest, for instance in
a dissemination system for stock trades in a financial
data center [24] or by disseminating RSS feeds [20]. If
multicast subscriptions were entirely influenced by hu-
man preferences, the body of the distribution showing
the number of subscribers to each logical group would
follow a power-law [14, 20], as we have seen in multiple
traces of distributions of human interest preferences.

It is still an open question whether one can craft a gen-
erative model for interest similarity between humans. In
attempt to answer this question, we have constructed sev-
eral models of varying complexity that we are currently
working on validating. Our preliminary results suggest
that exact overlaps of topics of interests between humans
are rare.

Replication of Components

Here we describe an important case in which the
MERGE-DUPLICATES heuristic performs well.

If we consider the applications running in the data cen-
ter, we find that they are often componentized: a single
application is actually constructed from multiple inter-
acting components. For example, to build a web page, a
front-end component may issue requests to a set of back-
end components. Such structures have important impli-
cations for subscription overlaps. In particular, the com-
ponentized application development model will tend to
confer structure on the underlying communication sub-
system, because the components will often have identical
patterns of replication.

9



Furthermore, operators in large-scale data centers may
deploy services automatically. The automation mecha-
nisms create regularities. For example, if servicesX , Y
andZ often interact, they might be deployed as a unit
onto the same nodes: where one finds a replica ofX
(and the associated logical groups), one would also find
replicas ofY andZ (and their associated groups). Collo-
cation of services can also be useful for performance rea-
sons, for instance to place a cache service near its clients.

We have an example of a major application in which
such mechanisms produce heavy overlaps. In a trace
showing the subscription patterns within an internal
publish-subscribe component of IBM’s Websphere [4],
there are 79 processes subscribed to over 6,600 logical
multicast groups. On average, 10 processes subscribe to
each logical group. Importantly, there are only314dis-
tinct logical groups with respect to membership, or less
than 5% of the total number of groups. From our ex-
perience with the use of multicast within data centers,
this result is typical. The MERGE-DUPLICATES heuris-
tic successfully collapses all these duplicates, showing a
trivial yet very important opportunity to make efficient
use of the IPMC resources of the data center.

5.4 Allocating IPMC Resources

Assume subscriptions overlaps have been collapsed by
MERGE-DUPLICATES or some other algorithm. The
second objective of the optimization question askswhich
of the collapsed groups should be allotted the limited
number physical IPMC groups addresses in the system,
and which should use point-to-point unicast such that
network overhead is minimized. Given the set of col-
lapsed groups, this can be done optimally.

Definition. Let

γm =
∑

k∈L

xkmλk

(

∑

n∈P

znm − 1

)

for m ∈ G represent thebroadcast overheadof groupm.

In essence,γm denotes the extra network bandwidth
required for doing transmissions tom via unicast instead
of as a network-level multicast.

LetX, Z be a feasible solution to the Exact Tiling pro-
gram without the secondary objective (2) or constraint
(4). Let m1, . . . , mM denote the collapsed groups inG
sorted byγm in reverse order. Define the HEAVIEST-
FIRST heuristic as follows: Assigntmi

= 1 if and only
if i ≤ min{M, MIPMC}. This heuristic captures the in-
tuition that the ‘expensive’ groups in terms of network
bandwidth should use network-level multicast.

Theorem. TheHEAVIEST-FIRST transport vector mini-
mizes the second objective of the Exact Tiling optimiza-
tion problem.

Proof. (Sketch) Consider objective (2) as a potential
function Φ with all tm set to 0. Changingtm from 0
to 1 for a groupm ∈ G reduces the value of the poten-
tial function byγm. By construction,T assignstm = 1
to the most expensive groups with respect toγm, thus
minimizingΦ without violating inequality (4).

The value ofγm for m ∈ G can be calculated by
the agent using the group membership information along
with the exponential average used to estimateλk for
k ∈ L that is reported by the library module.

5.5 Optimization Algorithm

The MCMD combines the MERGE-DUPLICATES and
HEAVIEST-FIRST heuristics to find an approximate so-
lution to the Exact Tiling problem. The algorithm can be
summarized as follows.

• Run MERGE-DUPLICATES, such that the traffic re-
ports for collapsed groups are aggregated.

• Run HEAVIEST-FIRST on the collapsed groups us-
ing the aggregated traffic reports.

We further optimize the resource use by noting that col-
lapsed groups with two or fewer members that are al-
lowed to use physical IPMC (due to the allow-IPMC or
max-IPMC primitives) to any of the groups should al-
ways use point-to-point unicast.

Between runs of the algorithm, data structures can eas-
ily be updated to reflect incremental changes.

The algorithm uses hash-tables to test for overlaps in
linear time, and thus hasO(K2Q) complexity whereQ
denotes the maximum number of processes subscribed to
any logical group.

6 Experimental Results

The fundamental goal of the MCMD is to allow admin-
istrators to make controlled use of IPMC to improve the
performance of the multicast technology in data centers.
Since MCMD is a new critical component in the data
center, in this section we demonstrate that it does not
create new worries for administrators. Specifically, we
experimentally evaluate a prototype of MCMD on the
Emulab test-bed to answer the following questions.

1. What is the overhead of running MCMD?

2. How quickly are membership or policy changes re-
flected in the system?

3. Does the system scale in the number of groups?

10
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Figure 4: Maximum throughput for a sender using reg-
ular IPMC and MCMD with direct IPMC mapping, and
MCMD unicast to 5 or 10 receivers per group.

We also evaluate our system in some of the bad-case sce-
narios outlined in section 2 by comparing it before and
after policy changes. Our results suggest that MCMD
provides fast and scalable control of IP multicast with
negligible overhead.

6.1 Methodology

We implemented a prototype of MCMD consisting of
14,000 lines of C and C++ code, and deployed it on
the Emulab testbed. All nodes had an Intel Pentium
3.0GHz processor and 1GB of RAM. Unless explicitly
mentioned, the network configuration was a star topol-
ogy with 100Mbps links between nodes. Each node in
the testbed ran the MCMD agent, along with one of the
following applications:

• A sender applicationjoins k logical groups, waits
for 2 seconds, then transmits 100,000 1KB pack-
ets usingsendto() to thek groups in a round-
robin fashion as fast as possible. The application
can be configured to rate-limit the send to 5,000
packets/sec.

• A receiver application joins the samek logi-
cal groups, and waits for incoming packets in a
recv() loop.

The rate of gossip orepoch lengthfor the agent was set to
1 exchange per second, unless otherwise specified. Error
bars represent one standard deviation, and are omitted if
they are too small to be clearly visible.
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Figure 5: Average CPU utilization for the sender appli-
cation with and without MCMD

6.2 Application Overhead

We measured the difference in maximum throughput for
the sender application for varyingk with and without
the MCMD library. We considered both the case where
MCMD maps each application-level address to a single
network-level IPMC address, and also the case where
each address resolves to 5 or 10 unicast addresses. Re-
call that in the IBM Websphere trace, the average group
size was around 10.

As shown in figure 4, there is a 10-15% reduction
in maximum throughput by running the sender appli-
cation with MCMD over one-to-one address mapping,
depending on number of logical groups. Our system
supports sending over 200,000 packets per second. We
also measured CPU utilization for the sender application
with and without MCMD active. Figure 5 shows an in-
crease of no more than 10% independent of the number
of groups. The relative overhead increases slightly with
greater number of groups due to collisions in the hash-
based data structure for the look-up map in the library.
The overhead was reduced by removing system calls on
the critical path of the overloaded socket calls in the
MCMD library, such as checking for urgent notifications,
and moving those to a separate thread viaclone() in
the library.

The performance of point-to-point unicast meet our
expectations, realizing approximately1/r of the max-
imum possible throughput when each application-level
group is mapped tor physical addresses.

6.3 Network Overhead

The network overhead of the MCMD protocol is shown
in figure 6. In this experiment the network constitutes 16
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Figure 6: Network background overhead for MCMD.
The dotted line denotes the 2.1KB/s average overhead.

nodes. The graph shows the amount of traffic transmit-
ted and received by the most loaded node with respect
to network traffic, namely the leader. Initially, there are
6 nodes running both a sender and receiver, joined by 5
more nodes at time40 and 6 more at80. At time 120, a
new translation is computed by the leader, and an urgent
notification is transmitted to the appropriate nodes.

By design, the gossip module in the MCMD agent
produces configurable constant background traffic. At
no point does MCMD control traffic exceed 11 KB/sec,
even when the urgent notification channel is enabled.

6.4 Latency

We now measure the latency of updates between nodes,
namely membership and mapping changes. This deter-
mines, for instance, how fast a new receiver starts receiv-
ing messages from senders, or how long it keeps receiv-
ing messages after leaving a logical group. As discussed
earlier, solutions need to trade-off latency and scalability.
We compare the scalable gossip control plane per se to
the fast version of MCMD that deploys an urgent notifi-
cation channel on top of the gossip mechanism. In figure
7 we can see how fast new updates propagate through
a 32-node network with and without the urgent notifica-
tion channel. In this experiment, the gossip module has
propagated the update everywhere after 10 epochs, and
follows the well-studied epidemic replication curve [25].
When urgent notifications are used, the latency becomes
at most 15 ms round-trip time in this experiment.

6.5 Policy Control

We revisit theMulticast DoSscenario from section 2
in which a malfunctioning sender suddenly starts send-
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Figure 7: Latency of updates using regular gossip
(epochs) and with the urgent notification channel enabled
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ing large amounts of traffic in a loop to a logical group,
thus overloading the receivers. Consider a network of 16
nodes that are sending and receiving low rates of traf-
fic over a single IPMC group. At time20, one of the
senders starts bombarding the group with traffic. The
administrator changes the policy at time40 to remove
the faulty sender from the group. Alternatively, the ad-
ministrator could have put a rate-limit on sends to this
particular group.

In figure 8, we see the CPU utilization of a receiver in
the group, averaged over 10 trials of running this exper-
iment. The CPU utilization increases substantially when
the DoS begins, and decreases almost instantly after the
new administrative policy is issued. In effect, the sender
was commanded to leave the group via an urgent notifi-
cation from the leader.

We also looked at theTraffic Magnetscenario where
an unsuspecting node in clusterB joins a high-traffic
multicast group in clusterA, increasing the load on the
router between the two clusters substantially. We set up
an experiment where 12 nodes inA each transmit 20
KB/s to a logical group that is mapped to a network-level
IPMC by MCMD. We measured the average throughput
over 10 trials between two regular nodes, one in each
cluster, and show the results in figure 9. At time20,
a noden in clusterB joins the IPMC group, causing
the throughput between the regular nodes to plummet to
about 2.5MB/s, or a 75% drop. At time40, the admin-
istrator changes the access policy and disallows noden
from belonging to the logical group, causing MCMD to
maken leave the network-level IPMC group. The net-
work has recovered 5 seconds later.

Naturally, both of these episodes could have been pre-
vented by specifying a complete administrative policy

12
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Figure 8: CPU utilization at a normal receiver. A mal-
functioning node bombards the group at time 20, and the
administrator restricts policy at time 40.

with access restrictions and rate-limits for senders, as de-
scribed in section 3.

7 Related Work

In the two decades since IP Multicast was first intro-
duced [15], researchers have extensively examined its se-
curity, stability and scalability characteristics. Much of
this work has attempted to scale and secure multicast in
the wide area.

7.1 Stability and Security

Work on secure multicast has focused on achieving two
properties in the wide-area: secrecy and authentication
[13, 21]. Secrecy implies that only legal receivers in
the group can correctly receive data sent to the group,
and authentication implies that only legal senders can
transmit data to the group [21]. Both these properties
are typically obtained by using cryptographic keys, and
much of the work in this area has focused on the task
of group key management. The security issues exam-
ined by MCMD are orthogonal to this existing body of
work — within a data center, we are not concerned with
either secrecy or authentication. Achieving these proper-
ties would not alleviate the performance problems of IP
Multicast; for instance, a sender could still spam a group
with nonsense data that fails to authenticate but neverthe-
less overloads receivers.

Access control for multicast has been proposed before
as a solution for achieving secure multicast [10, 19]; once
again, this work is aimed at wide-area scenarios and fo-
cuses on the secure implementation of the access control
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Figure 9: Average throughput between two nodes in sep-
arate subnets. At time 20, a node erroneously joins a
high-traffic IPMC group in the other subnet, and the ad-
ministrator corrects the access control policy at time 40.

mechanism. SSM [11] is an IP Multicast variant that al-
lows receivers to subscribe to individual senders within
multicast groups, eliminating the problem of arbitrary
machines launching DoS attacks on a group.

Reliable multicast is a research sub-area in itself, and
many papers have looked specifically at the stability of
reliability mechanisms. SRM [17] is a well-known pro-
tocol that’s known to inject massive multicast overheads
in certain loss conditions, triggering further loss events
at receivers [12]. MCMD operates at the routing layer
and is oblivious to end-to-end reliability mechanisms,
but can help mitigate the ill-effects of these protocols,
as described previously.

7.2 Scalability

The scalability of IP Multicast in the number of groups
in the system is limited by the space available in router
tables [23]. The impact of adding IPMC state to network
routers has been analyzed by Wong, Katz and McCanne
[26, 27].

Prior work on imprecise channelization[9, 24] ex-
plores the question at the core of the MCMD optimiza-
tion problem. This body of research considers the case
where end-host filtering for redundant or irrelevant pack-
ets is employed, and the goal is to minimize the amount
of duplicate transmissions along with the total bandwidth
overhead. Cost of this form of receiver filtering can be
pretty high. The channelization problem does not ad-
dress the fact that end-host NIC performance degrades
with large numbers of multicast groups. Thus, an opti-
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mal solution to the channelization problem may require
receivers to join a large number of groups.

8 Future Work

One avenue of future research involves allowing admin-
istrators to mandate custom transports for groups — for
example, using point-to-point TCP connections or over-
lay graphs to transfer data to receivers. We are also in-
terested in extending MCMD to scenarios with multiple
data centers, separate different policies can be defined
for traffic that crosses administrative boundaries. Lastly,
we are in the process of examining grouping patterns in-
duced by other real-world applications, to develop more
generalizable heuristics that MCMD can use to allocate
IPMC groups.

9 Conclusion

Many major data center operators legislate against the
use of IP multicast: the technology is perceived as dis-
ruptive and insecure. Yet IPMC offers attractive per-
formance and scalability benefits. Our paper proposes
Dr. Multicast (MCMD), a remedy to this conundrum. By
permitting operators to define an acceptable use policy
(and to modify it at runtime if needed), MCMD permits
active management of multicast use. Moreover, by in-
troducing a novel scheme for sharing scarce IPMC ad-
dresses among logical groups, MCMD can reduce the
number of IPMC addresses needed sharply, and ensures
that the technology is only used in situations where it of-
fers significant benefits.
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